Kirchturm

Aufgabenstellung	Der durch ein Foto gegebene Turm der Wallfahrtskirche Mariatrost in Graz ist zu modellieren. Dabei soll das Objekt sowohl als "Drehfläche" mit einer geringen Zahl von Meridianen, als auch als Vereinigung von geeigneten Teilen von Zylinderflächen erzeugt werden.
Lehrziele	Erzeugung einer der Vorgabe entsprechenden Leitkurve als Zusammensetzung von Splinekurven und Strecken. Erläuterung der Annäherung von Drehflächen durch das Programm GAM und Nutzung dieser für ein konkretes Objekt. Erzeugung von für die Modellierung von "Zwiebeltürmen" geeigneten Teilen von Zylinderflächen.

Didakt. Hinweise

Auf die unterschiedliche Annäherung von Drehflächen durch Schul-CAD-Programme und professionelle Programme sollte hingewiesen werden.

Bildungsbereiche	Architektur
Notw. Vorwissen	-
Grundkenntnisse des verwendeten 3D- CAD-Systems (Drehung, Schiebung, Boole'sche Operationen)	Å
 Dateien GAM-Dateien: Leitkurven (Objekte: *.dat); Teile und Lösungen (Projekte: *.pro) – siehe Ausarbeitung Bilddateien: Mariatrost.jpg, Turm.jpg Virtuelle Welten: Turm_Drehflächen.wrl, Turm_Zylinderflächen.wrl Angabe: angabe.doc 	

Drehkörper

Kirchturm

Der durch ein Foto gegebene Turm der Wallfahrtskirche Mariatrost in Graz ist zu modellieren.

- 1. Version: Erzeugung mit dem Programm GAM als "Drehfläche" mit einer geringen Zahl von Meridianen.
- **2. Version:** Erzeugung als Vereinigung von geeigneten Teilen von Zylinderflächen.

Die dabei benötigten Leitkurven sind als Zusammensetzung von Splinekurven und Strecken zu generieren.

Lösungsvorschlag mit GAM

	🐴 Polygon, Spline	
Version 1 (Drehflächen): Für die Festlegung der Stützpunkte des Meridians ist ein Raster in der yz-Ebene empfehlenswert.	Polygon ✓ glätten C in [xy]-Ebene, x<->y (kubische Spline • in [xz]-Ebene, x<->z Punkte Pi(xi, yi C in [xz]-Ebene, x<->z P1(0, 3, -4) C in beliebiger Ebene P3(0, 5, 0) P4(0, 2, 2) P6(0, 2, 3) P6(0, 3, 4) ¥	e-Interpolation) zi): wähle Polygon Punkte neu
Stützpunkte anklicken!	ax + by + cz = d a: 1 c: 0 b: 0 d: 0 wáhle Ebene WKS	<u>Info</u> <u>abbrechen</u>
Einzelne Kurven und Strecken können mit dem Befehl "alle <u>S</u> chnittelemente zusammenfassen" zu einer Kurve zusammengefasst werden.		
Auf diese Art können die Leitkurven für den oberen und den unteren Teil des Turmes erzeugt werden. Es empfiehlt sich, diese als Objekte abzuspeichern. Siehe: Leitkurve-zusammengefasst.dat, untere Leitkurve-zusammengefasst.dat.)

Diese Leitkurven können dann zur Erzeugung von "Drehflächen" benützt werden. Der obere Teil des Turmes hat dabei 8 Meridiane, der untere vier. Zur Verbindung der beiden Teile eignet sich etwa ein regelmäßiges achtseitige Prisma.

Ergebnis: (*Turm_Drehflächen.pro*) Da

Das erste Ergebnis erscheint etwas gestaucht. Dies lässt sich aber durch eine Skalierung in z-Richtung beheben:

Turm_Drehflächen_gestreckt.pro

Turm_Drehflächen_gestreckt.wrl

Version 2 (Zylinderflächen):

Die Leitkurven von Version 1 (*Leitkurve-zusammengefasst.dat*, untere *Leitkurve-zusammengefasst.dat* oder *Leitkurve.pro*) können auch als Leitkurven für die benötigten allgemeinen Zylinderflächen verwendet werden.

Um das gleiche Ergebnis, wie bei der ersten Version zu erzielen müsste man allerdings die obere Leitkurve um 22,5° und die untere um 45° verdrehen.

Da bei diesem Beispiel nur versucht werden soll, zu zeigen wie man derartige Objekte "nachbauen" kann, wurde hier darauf verzichtet.

Die Datei *Zylinderflächen_Turm.pro* zeigt geeignete Zylinderflächen, die um die halbe Höhe der Zylinder in die negative x-Richtung verschoben wurden.

Um aus den obigen Zylinderflächen den gewünschten Kirchturm zusammenbauen zu können, müssen mit Hilfe geeigneter Objekte die benötigten Teile herausgeschnitten werden. Die Datei

Zylinderflächen_Turm+Schnittwürfel.pro zeigt geeignete Objekte, die mit Hilfe von Differenzbildungen die benötigten Teile der Zylinder liefern.

Das Ergebnis zeigt die Datei *Zylinderteile_Turm.pro.*

Der obere Teil muss dann sieben mal um 45° um die z-Achse gedreht und jeweils kopiert werden.

Für den unteren benötigt man drei durch Verdrehen um die z-Achse um 90° entstandene Kopien.

Dazu brauchen beim Drehen nur die jeweiligen Winkel und Kopienanzahlen eingegeben werden (siehe rechts).

Version 1.0 / November 2003

Die Datei *Turm_Zylinderflächen.pro* zeigt das Ergebnis. Dabei gibt es leider aber Probleme bei der Vereinigung der Einzelteile. Für den Export als VRML-Datei bereitet das allerdings keine Probleme.

Natürlich kann auch hier die Form durch eine geeignete Skalierung in z-Richtung angepasst werden. Das zeigt die Datei *Turm_Zylinderflächen_gestreckt.pro*. Da es sich in diesem Fall aber um 12 Einzelobjekte handelt, ist dieser Vorgang allerdings etwas mühsam. Besser wäre es in diesem Fall, die Leitkurven entsprechend zu skalieren. Der Export als VRML-Datei bereitet auch hier keine Probleme.

Turm_Zylinderflächen_gestreckt.pro

Turm_Zylinderflächen_gestreckt.wrl